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4.1 Set Cover

• Valid instances : Universe U , |U | = n. Family of sets F = {S1, . . . , Sm}, Si ⊆ U for all i.

• Feasible solutions : A set I ⊆ [m] such that
⋃

i∈I Si = U .

• Objective function : Minimizing |I|.

• Greedy algorithm : In each iteration, pick a set which covers most uncovered elements, until
all the elements are covered.

Theorem 4.1.1 If OPT contains k sets, the greedy algorithm uses ≤ k(1 + ln n
k ) sets.

Proof: Let It be the sets selected by the greedy algorithm up to t iterations. Let nt be the
number of uncovered elements at iteration t. Then nt = n− |

⋃
i∈It Si|, n0 = n, I0 = ∅.

We claim that:

Claim 4.1.2 nt ≤ (1− 1
k )nt−1

Proof: Let Jt = U\(
⋃

i∈It Si), then OPT covers Jt−1 with ≤ k sets.

Because |Jt−1| = nt−1, we know that OPT covers nt−1 uncovered elements with ≤ k sets. Therefore
there exists a set in OPT which covers at least nt−1

k uncovered elements.

Because the greedy algorithm always chooses the set which covers most uncovered elements, the
greedy algorithm covers at least nt−1

k uncovered elements at iteration t.

Therefore nt ≤ nt−1 − nt−1

k = (1− 1
k )nt−1

Now, by induction, nt ≤ (1− 1
k )tn.

Consider t = k ln n
k ,

nt ≤
(

1− 1

k

)k ln n
k

n ≤ e− ln n
k · n ≤ k

n
· n = k

The greedy algorithm covers the remaining k elements using at most k sets, so the greedy algorithm
uses at most k + k ln n

k = k(1 + ln n
k ) sets pverall.

Is the analysis tight? Yes, here is example:

U = {a1, . . . , an, b1, . . . , bn, c1, . . . , cn}, S1 = {a1, . . . , an}, S2 = {b1, . . . , bn}, S3 = {c1, . . . , cn},
S′i = {aj , bj , cj | n

2i
< j ≤ n

2i−1 }, i = 1, . . . , log n+ 1.
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The greedy algorithm will choose all the set S′i, i = 1, . . . , log n + 1, since each one covers exactly
half of the remaining elements. But the optimal solution is S1, S2, S3.

Is there any better algorithm? No, due to a recent result of Dinur and Steurer [DS14]:

Theorem 4.1.3 Unless P = NP , there is no C · lnn-approx for set cover problem with constant
C < 1.

[F98] shows a weaker result: Unless NP ⊆ DTIME(npoly logn), there is no C · lnn-approx for set
cover problem with constant C < 1.

4.2 Weighted Set Cover

• Valid instances : Universe U , |U | = n. Family of sets F = {S1, . . . , Sm}, Si ⊆ U for all i.
Each set Si has a cost ci.

• Feasible solutions : A set I ⊆ [m] such that
⋃

i∈I Si = U .

• Objective function : Minimizing
∑

i∈I ci.

• Greedy algorithm : In each iteration, pick a set which maximized number of uncovered elements
cost of the set ,

until all the elements are covered.

Theorem 4.2.1 The greedy algorithm is an Hn = Θ(log n)-approximation algorithm. Here Hn =
1 + 1

2 + 1
3 + . . .+ 1

n .

Proof: Let It be the sets selected by the greedy algorithm up to t iterations. Let nt be the number
of uncovered elements at iteration t. Let C∗ =

∑
i∈OPT ci. Then nt = n−|

⋃
i∈It Si|, n0 = n, I0 = ∅.

We claim that:

Claim 4.2.2 The greedy algorithm picks a set with density = number of uncovered elements
cost of the set ≥ nt−1

c∗ on
iteration t.

This claim can be directly derived by the following claim:

Claim 4.2.3 On iteration t, there exists a set in OPT with cost of the set
number of uncovered elements ≤

c∗

nt−1
.

Proof: Let Jt = U \ (
⋃

i∈It Si), then OPT covers Jt−1 with cost ≤ c∗.
Suppose the claim is false. We have:

c∗ =
∑

i∈OPT

ci =
∑

i∈OPT

ci
|Si ∩ Jt−1|

|Si ∩ Jt−1| >
∑

i∈OPT

c∗

nt−1
|Si ∩ Jt−1| ≥

c∗

nt−1
|Jt−1| = c∗

Contradicted, thus proved.

Now, assume the greedy algorithm picks S′1, . . . , S
′
k, then

c(S′t)
|S′t∩Jt−1| ≤

c∗

nt−1
. Let xt = |S′t ∩ Jt−1| be

the number of elements that greedy covers in iteration t. Then c(S′t) ≤ xt c∗

nt−1
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c(Greedy) =
k∑

i=1
c(S′i) ≤

k∑
i=1

xi
c∗

ni−1

= x1
c∗

n + x2
c∗

n−x1
+ x3

c∗

n−x1−x2
+ . . .+ xk

c∗

n−x1−x2−...−xk−1

= c∗(

1

n
+ . . .+

1

n︸ ︷︷ ︸
x1

+

1

n− x1
+ . . .+

1

n− x1︸ ︷︷ ︸
x2

+ . . .

+

1

n− x1 − . . .− xk−1
+ . . .+

1

n− x1 − . . .− xk−1︸ ︷︷ ︸
xk

)

≤ c∗( 1
n + 1

n−1 + . . .+ 1) = c∗Hn

Remark: In some scenarios it is natural to consider problem instances where n is small, but
m (the number of sets in the family) is extremely large (exponential in n). It is worth noting
that in order to function, the greedy algorithm just needs to be able to pick the set of maximum
density. Even when m is exponential, sometimes it is reasonable to assume that we can do this,
i.e. we can find the set of maximum density in polynomial time despite an exponential number of
sets. This is known as a “density oracle”, and if one exists then the greedy algorithm still gives an
Hn-approximation in polynomial time.

In fact, it suffices to simply be able to approximate the density:

Theorem 4.2.4 If there exists an α-approximation for the max density problem, then there exists
an αHn-approximation for the original problem.

4.3 Max k-Cover Problem

This is essentially the maximization version of Set Cover.

• Valid instances : Universe U , |U | = n. Family of sets F = {S1, . . . , Sm}, Si ⊆ U for all i.
Integer k ≤ n.

• Feasible solutions : A set I ⊆ [m] such that |I| ≤ k.

• Objective function : Maximizing |
⋃

i∈I Si|.

• Greedy algorithm : In each iteration, pick a set which covers most uncovered elements, until
k sets are selected.

Theorem 4.3.1 The greedy algorithm is a (1− 1
e )-approximation algorithm.

Proof: Let It be the sets selected by the greedy algorithm up to t iterations, Jt = U\(
⋃

i∈It Si).
Assume the greedy algorithm picks S′1, . . . , S

′
k. Let xt = |S′t ∩ Jt−1|, zt = OPT −

∑
j≤i xj =

OPT − |
⋃

j≤i Sj |. The key inequality is that |OPT\
⋃

j≤i Sj | ≥ zi.
We claim that:
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Claim 4.3.2 xi+1 ≥ zi
k .

Proof: Because OPT covers at least zi uncovered elements with k sets, we know that there exists
a set which covers at least zi

k uncovered elements. From the property of the greedy algorithm,
xi+1 ≥ zi

k .

We also claim that:

Claim 4.3.3 zi ≤ (1− 1
k )iOPT .

Proof: We prove the claim by induction method. The base case is z0 ≤ OPT , which is clearly
true since z0 = OPT . Now assume that zi−1 ≤ (1− 1

k )i−1OPT . Then

zi = zi−1 − xi ≤ zi−1 −
zi−1
k

= zi−1

(
1− 1

k

)
≤
(

1− 1

k

)i

OPT

Therefore proved.

Now, we know that:

Greedy =

k∑
i=1

xi = OPT − zk ≥ OPT −
(

1− 1

k

)k

OPT ≥ OPT − 1

e
OPT =

(
1− 1

e

)
OPT,

which proves the theorem.

4.4 Vertex Cover

We can see the vertex cover problem as a special set cover problem: the universe U is the edge set
E, and the family of sets is F = {Su | u ∈ V } where Su = {{u, v} | {u, v} ∈ E}. But this view
naturally leads to the following question: why does vertex cover have a 2-approximation, when the
best possible for set cover is lnn?

Definition 4.4.1 The frequency of e ∈ U is fe = |{S | S ∈ F, e ∈ S}|, the number of sets in F
that contain e.

Theorem 4.4.2 If ∀e ∈ U , fe ≤ f , then there is an f -approximation algorithm for set cover
problem.

Algorithm: In each iteration, arbitrarily choose an uncovered element and select all the sets that
contain this element. Repeat until all elements covered.

This is an f -approximation for the same reason that our algorithm for vertex cover was a 2-
approximation. Informally, for every two elements e, e′ ∈ U considered by this algorithm, there are
no sets which cover both e and e′ (or else whichever was covered first would have caused this set
to be included, so the algorithm would not consider the second element). The OPT has to be at
least as large as the number of iterations of this algorithm. On the other hand, in each iteration
this algorithm only picks f sets. Hence it includes at most f ·OPT sets.
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